parade/shaders/parade_fs.glsl

422 lines
10 KiB
Plaintext
Raw Normal View History

#version 430
2023-11-11 21:59:53 -05:00
#extension GL_NV_uniform_buffer_std430_layout : enable
2023-11-06 22:02:45 -05:00
uniform mat4 P;
uniform mat4 V;
uniform mat4 M;
uniform vec3 cam_pos;
uniform int window_width;
uniform int window_height;
2023-11-07 00:15:16 -05:00
uniform float smoothing;
2023-11-06 22:02:45 -05:00
2023-11-12 23:05:22 -05:00
const uint P_SPHERE = 0x00;
const uint P_TORUS = 0x01;
const uint P_CONE = 0x02;
const uint P_CUBE = 0x03;
2023-11-13 00:10:20 -05:00
const uint P_ROUNDED_CUBE = 0x04;
2023-11-12 23:05:22 -05:00
2023-11-16 17:06:00 -05:00
bool twoExists = false;
2023-11-11 21:59:53 -05:00
struct GLSLPrimitive
{
2023-11-11 21:59:53 -05:00
vec4 position;
vec4 diffuse_color;
vec4 specular_color;
vec4 ambient_color;
2023-11-13 00:10:20 -05:00
int specular_exponent;
2023-11-12 23:05:22 -05:00
uint type;
float radius;
float height;
float inner_radius;
float outer_radius;
2023-11-11 21:59:53 -05:00
float size;
2023-11-12 23:05:22 -05:00
uint dummy;
2023-11-16 17:06:00 -05:00
uint subtract;
uint dummy2;
uint dummy3;
uint dummy4;
2023-11-11 21:59:53 -05:00
};
2023-11-13 11:29:48 -05:00
struct GLSLLight
{
vec4 position;
vec4 diffuse_color;
vec4 specular_color;
vec4 ambient_color;
};
2023-11-12 23:05:22 -05:00
layout(std430, binding = 0) buffer PrimitiveBuffer
{
2023-11-11 21:59:53 -05:00
GLSLPrimitive primitives[];
};
2023-11-13 11:29:48 -05:00
layout(std430, binding = 1) buffer LightBuffer
{
GLSLLight lights[];
};
2023-11-06 22:02:45 -05:00
out vec4 FragColor;
2023-11-12 23:05:22 -05:00
struct NormalEstimationData
2023-11-06 22:02:45 -05:00
{
2023-11-12 23:05:22 -05:00
vec3 normal;
float minDistance;
float secondMinDistance;
float smoothMinDistance;
GLSLPrimitive closestPrimitive;
GLSLPrimitive secondClosestPrimitive;
2023-11-06 22:02:45 -05:00
};
2023-11-12 23:05:22 -05:00
float sphereSDF(vec3 p, vec3 center, float r)
2023-11-06 22:02:45 -05:00
{
return length(p - center) - r;
}
2023-11-12 23:05:22 -05:00
float torusSDF(vec3 p, vec3 center, float R, float r)
{
2023-11-11 21:59:53 -05:00
vec2 q = vec2(length(p.xz - center.xz) - R, p.y - center.y);
2023-11-06 22:02:45 -05:00
return length(q) - r;
}
2023-11-12 23:05:22 -05:00
float coneSDF(vec3 p, vec3 center, float h, float r)
2023-11-06 22:02:45 -05:00
{
2023-11-12 23:05:22 -05:00
vec2 d = abs(vec2(length(p.xz), p.y)) - vec2(r, h);
return length(d) < 0.0 ? max(d.x, -d.y) : length(max(d, vec2(0)));
2023-11-06 22:02:45 -05:00
}
2023-11-12 23:05:22 -05:00
float cubeSDF(vec3 p, vec3 c, float s)
2023-11-06 22:02:45 -05:00
{
2023-11-12 23:05:22 -05:00
float x = max(p.x - c.x - (s / 2.0), c.x - p.x - (s / 2.0));
float y = max(p.y - c.y - (s / 2.0),c.y - p.y - (s / 2.0));
float z = max(p.z - c.z - (s / 2.0),c.z - p.z - (s / 2.0));
float d = x;
d = max(d, y);
d = max(d, z);
return d;
}
2023-11-13 00:10:20 -05:00
float roundedCubeSDF(vec3 p, vec3 center, float s, float r) {
return length(max(abs(p - center) - vec3(s), vec3(0))) - r;
}
2023-11-12 23:05:22 -05:00
float sdf(vec3 pos, GLSLPrimitive prim)
{
float d;
switch (prim.type)
{
case P_SPHERE:
{
d = sphereSDF(pos, prim.position.xyz, prim.radius);
break;
}
case P_TORUS:
{
d = torusSDF(pos, prim.position.xyz, prim.outer_radius, prim.inner_radius);
break;
}
case P_CONE:
{
d = coneSDF(pos, prim.position.xyz, prim.height, prim.radius);
break;
}
case P_CUBE:
{
d = cubeSDF(pos, prim.position.xyz, prim.size);
break;
}
2023-11-13 00:10:20 -05:00
case P_ROUNDED_CUBE:
{
d = roundedCubeSDF(pos, prim.position.xyz, prim.size, prim.radius);
break;
}
2023-11-12 23:05:22 -05:00
default:
{
d = 0.0;
break;
}
}
return d;
2023-11-06 22:02:45 -05:00
}
2023-11-12 23:05:22 -05:00
float smoothMinSDF(float d1, float d2, float k)
{
2023-11-30 17:33:35 -05:00
if (k == 0.0) return min(d1, d2);
float h = max(k - abs(d1 - d2), 0.0) / k;
2023-11-06 22:02:45 -05:00
return min(d1, d2) - h * h * h * k * 1.0 / 6.0;
}
2023-11-12 23:05:22 -05:00
float smoothMaxSDF(float d1, float d2, float k)
{
2023-11-30 17:33:35 -05:00
if (k == 0.0) return max(d1, d2);
float h = max(k - abs(d1 - d2), 0.0) / k;
return max(d1, d2) - h * h * k * 0.25;
2023-11-06 22:02:45 -05:00
}
2023-11-30 17:33:35 -05:00
float opSmoothSubtraction(float d1, float d2, float k)
2023-11-12 23:05:22 -05:00
{
2023-11-30 17:33:35 -05:00
float h = clamp(0.5 - 0.5 * (d2 + d1) / k, 0.0, 1.0);
return mix(d2, -d1, h) + k * h * (1.0 - h);
}
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
//void estimateSmoothNormals(vec3 p, float smoothness, float epsilon, inout vec3 normals)
//{
// float d, nx, ny, nz;
//
// for (int i = 0; i < primitives.length(); i++)
// {
// if (i == 0)
// {
// d = sdf(p, primitives[0]);
// nx = sdf(vec3(p.x + epsilon, p.y, p.z), primitives[0]);
// ny = sdf(vec3(p.x, p.y + epsilon, p.z), primitives[0]);
// nz = sdf(vec3(p.x, p.y, p.z + epsilon), primitives[0]);
// }
// if (primitives[i].subtract == 1) continue;
// else
// {
// d = smoothMinSDF(d, sdf(p, primitives[i]), smoothness);
// nx = smoothMinSDF(nx, sdf(vec3(p.x + epsilon, p.y, p.z), primitives[i]), smoothness);
// ny = smoothMinSDF(ny, sdf(vec3(p.x, p.y + epsilon, p.z), primitives[i]), smoothness);
// nz = smoothMinSDF(nz, sdf(vec3(p.x, p.y, p.z + epsilon), primitives[i]), smoothness);
// }
// }
//
// for (int i = 0; i < primitives.length(); i++)
// {
// if (primitives[i].subtract == 1)
// {
// d = smoothMaxSDF(d, -sdf(p, primitives[i]), smoothness);
// nx = smoothMaxSDF(nx, -sdf(vec3(p.x + epsilon, p.y, p.z), primitives[i]), smoothness);
// ny = smoothMaxSDF(ny, -sdf(vec3(p.x, p.y + epsilon, p.z), primitives[i]), smoothness);
// nz = smoothMaxSDF(nz, -sdf(vec3(p.x, p.y, p.z + epsilon), primitives[i]), smoothness);
// }
// }
//
// nx -= d;
// ny -= d;
// nz -= d;
//
// normals = normalize(vec3(nx, ny, nz));
//}
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
//void estimateSmoothNormalsMax(vec3 p, float smoothness, float epsilon, inout vec3 normals)
//{
// float d = sdf(p, primitives[0]);
// float nx = sdf(vec3(p.x + epsilon, p.y, p.z), primitives[0]);
// float ny = sdf(vec3(p.x, p.y + epsilon, p.z), primitives[0]);
// float nz = sdf(vec3(p.x, p.y, p.z + epsilon), primitives[0]);
//
//
// for (int i = 0; i < primitives.length(); i++)
// {
// d = smoothMaxSDF(d, sdf(p, primitives[i]), smoothness);
// nx = smoothMaxSDF(nx, sdf(vec3(p.x + epsilon, p.y, p.z), primitives[i]), smoothness);
// ny = smoothMaxSDF(ny, sdf(vec3(p.x, p.y + epsilon, p.z), primitives[i]), smoothness);
// nz = smoothMaxSDF(nz, sdf(vec3(p.x, p.y, p.z + epsilon), primitives[i]), smoothness);
// }
// nx -= d;
// ny -= d;
// nz -= d;
//
// normals = normalize(vec3(nx, ny, nz));
//}
float calcDist(vec3 pos, inout float dist)
{
2023-11-16 17:06:00 -05:00
for (int i = 0; i < primitives.length(); i++)
{
2023-11-30 17:33:35 -05:00
float newDist = sdf(pos, primitives[i]);
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
if (primitives[i].subtract == 0)
dist = smoothMinSDF(dist, newDist, smoothing);
else
dist = opSmoothSubtraction(newDist, dist, smoothing);
}
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
return dist;
2023-11-16 17:06:00 -05:00
}
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
float calcDist2(vec3 pos)
2023-11-16 17:06:00 -05:00
{
2023-11-30 17:33:35 -05:00
float dist = 999999.0;
2023-11-16 17:06:00 -05:00
for (int i = 0; i < primitives.length(); i++)
2023-11-12 23:05:22 -05:00
{
2023-11-30 17:33:35 -05:00
float newDist = sdf(pos, primitives[i]);
if (primitives[i].subtract == 0)
dist = smoothMinSDF(newDist, dist, smoothing);
else
dist = opSmoothSubtraction(newDist, dist, smoothing);
2023-11-12 23:05:22 -05:00
}
2023-11-30 17:33:35 -05:00
return dist;
2023-11-12 23:05:22 -05:00
}
2023-11-30 17:33:35 -05:00
vec3 estimateNormals(vec3 p, float epsilon)
2023-11-12 23:05:22 -05:00
{
2023-11-30 17:33:35 -05:00
/*float d1 = 99999.0;
float d2 = 99999.0;
2023-11-12 23:05:22 -05:00
2023-11-30 17:33:35 -05:00
float x = calcDist(vec3(p.x + epsilon, p.y, p.z), d1) - calcDist(vec3(p.x - epsilon, p.y, p.z), d2);
d1 = 99999.0;
d2 = 99999.0;
float y = calcDist(vec3(p.x, p.y + epsilon, p.z), d1) - calcDist(vec3(p.x, p.y - epsilon, p.z), d2);
d1 = 99999.0;
d2 = 99999.0;
float z = calcDist(vec3(p.x, p.y, p.z + epsilon), d1) - calcDist(vec3(p.x, p.y, p.z - epsilon), d2);
return normalize(vec3(x, y, z));*/
vec2 e = vec2(1.0, -1.0) * 0.5773;
return normalize(e.xyy * calcDist2(p + e.xyy * epsilon) +
e.yyx * calcDist2(p + e.yyx * epsilon) +
e.yxy * calcDist2(p + e.yxy * epsilon) +
e.xxx * calcDist2(p + e.xxx * epsilon));
}
2023-11-12 23:05:22 -05:00
vec4 blendColors(vec4 color1, vec4 color2, float blendFactor)
{
return mix(color1, color2, blendFactor);
2023-11-07 01:17:16 -05:00
}
2023-11-06 22:02:45 -05:00
2023-11-13 00:10:20 -05:00
float weightFunction(float distance, float k, float epsilon)
{
if (k <= 0.0)
{
2023-11-12 23:05:22 -05:00
// When k is zero, return 1 if the distance is zero (object is closest), else return 0.
return distance <= 0.001 ? 1.0 : 0.0;
}
2023-11-13 00:10:20 -05:00
else
{
2023-11-12 23:05:22 -05:00
// As k increases, the transition becomes smoother.
return (k * k * k) / distance;
}
}
2023-11-06 22:02:45 -05:00
2023-11-16 17:06:00 -05:00
vec4 renderLight(vec4 position) {
vec4 newPosition = position;
newPosition.x = position.y;
newPosition.y = -position.x;
vec4 matPos = P * V * M * newPosition;
matPos /= matPos.w;
vec2 screenPos = 2.0 * vec2(gl_FragCoord.x / window_width, gl_FragCoord.y / window_height) - 1.0;
float aspectRatio = float(window_width) / float(window_height);
screenPos.y /= aspectRatio;
vec2 centerScreenPos = matPos.xy;
float radius = 0.05 / length(newPosition.xyz - cam_pos);
vec4 color;
if (length(screenPos - centerScreenPos) < radius && length(screenPos - centerScreenPos) > radius * 0.9) {
color = vec4(1.0, 0.95, 0.6, 1.0);
}
else {
color = vec4(0.0);
}
return color;
}
2023-11-06 22:02:45 -05:00
void main(void)
{
vec3 normals;
2023-11-16 17:06:00 -05:00
vec4 color = vec4(0.0);
vec4 lightColor = vec4(0.0);
2023-11-06 22:02:45 -05:00
vec4 ray_pos = vec4(cam_pos, 1.0);
float ray_dist = 0.0;
float max_dist = 100.0;
2023-11-13 11:29:48 -05:00
float epsilon = 0.001;
2023-11-06 22:02:45 -05:00
int steps = 0;
int max_steps = 1000;
vec3 light_pos = vec3(0.0, 1.0, 0.0);
2023-11-07 00:15:16 -05:00
float k = smoothing;
2023-11-06 22:02:45 -05:00
vec2 ndc_pos = 2.0 * vec2(gl_FragCoord.x / window_width, gl_FragCoord.y / window_height) - 1.0;
vec4 cam_dir = inverse(P) * vec4(ndc_pos, 1.0, 1.0);
cam_dir /= cam_dir.w;
cam_dir = vec4(cam_dir.xyz, 0.0);
vec4 ray_dir = normalize(inverse(V) * cam_dir);
2023-11-13 00:10:20 -05:00
vec4 accumulatedDiffuse = vec4(0.0);
vec4 accumulatedSpecular = vec4(0.0);
vec4 accumulatedAmbient = vec4(0.0);
float accumulatedSpecExp = 0.0;
2023-11-12 23:05:22 -05:00
float totalWeight = 0.0;
int closestIndex = -1;
2023-11-13 00:10:20 -05:00
while (ray_dist < max_dist && steps < max_steps && primitives.length() != 0)
2023-11-06 22:02:45 -05:00
{
steps++;
2023-11-12 23:05:22 -05:00
float minDist = 999999.0;
2023-11-16 17:06:00 -05:00
2023-11-30 17:33:35 -05:00
calcDist(ray_pos.xyz, minDist);
2023-11-12 23:05:22 -05:00
for (int i = 0; i < primitives.length(); i++)
{
2023-11-30 17:33:35 -05:00
float weight = weightFunction(minDist, smoothing, epsilon);
2023-11-13 00:10:20 -05:00
accumulatedDiffuse += primitives[i].diffuse_color * weight;
accumulatedSpecular += primitives[i].specular_color * weight;
accumulatedAmbient += primitives[i].ambient_color * weight;
accumulatedSpecExp += primitives[i].specular_exponent * weight;
2023-11-12 23:05:22 -05:00
totalWeight += weight;
}
2023-11-06 22:02:45 -05:00
if (minDist <= epsilon)
{
2023-11-12 23:05:22 -05:00
if (totalWeight > 0.0) {
2023-11-13 00:10:20 -05:00
accumulatedDiffuse /= totalWeight;
accumulatedSpecular /= totalWeight;
accumulatedAmbient /= totalWeight;
accumulatedSpecExp /= totalWeight;
2023-11-12 23:05:22 -05:00
}
2023-11-06 22:02:45 -05:00
vec4 ambient_color, diffuse_color;
2023-11-13 11:29:48 -05:00
vec4 ambient;
vec4 diffuse;
vec4 specular;
float distLight;
vec3 lw;
2023-11-13 00:10:20 -05:00
ambient_color = vec4(accumulatedAmbient.rgb, 1.0);
diffuse_color = vec4(accumulatedDiffuse.rgb, 1.0);
2023-11-30 17:33:35 -05:00
normals = estimateNormals(ray_pos.xyz, epsilon);
2023-11-06 22:02:45 -05:00
2023-11-13 11:29:48 -05:00
for (int i = 0; i < lights.length(); i++)
{
ambient += lights[i].ambient_color * ambient_color;
vec3 nw = normalize(normals);
lw = normalize(lights[i].position.xyz - ray_pos.xyz);
distLight = length(vec4(ray_pos.xyz - lights[i].position.xyz, 1.0));
diffuse += max(dot(nw, lw), 0) * diffuse_color * lights[i].diffuse_color;
2023-11-06 22:02:45 -05:00
2023-11-13 11:29:48 -05:00
float spec;
vec3 vw = normalize(cam_pos - ray_pos.xyz);
2023-11-06 22:02:45 -05:00
2023-11-13 11:29:48 -05:00
vec3 halfwayDir = normalize(lw + vw);
spec = pow(max(dot(halfwayDir, nw), 0), int(accumulatedSpecExp));
2023-11-06 22:02:45 -05:00
2023-11-13 11:29:48 -05:00
specular += spec * accumulatedSpecular * lights[i].specular_color;
2023-11-06 22:02:45 -05:00
2023-11-16 17:06:00 -05:00
color = ambient + (1.0 / (distLight * distLight) * (diffuse + specular));
2023-11-13 11:29:48 -05:00
}
2023-11-06 22:02:45 -05:00
break;
}
ray_pos += ray_dir * minDist;
ray_dist += minDist;
}
2023-11-16 17:06:00 -05:00
for (int i = 0; i < lights.length(); i++) lightColor += renderLight(lights[i].position);
FragColor = mix(color, lightColor, lightColor.a);
2023-11-06 22:02:45 -05:00
}